To demonstrate whether a dynamical system can be Hamiltonian, you check a small set of strict mathematical conditions. Below is a clear, technical checklist, from fastest rejection to constructive proof.
Start from the system form
\[ \dot{x} = f(x), \qquad x \in \mathbb{R}^{2n}. \]
The system is Hamiltonian if and only if it can be written as
\[ \dot{x} = J \nabla H(x), \]
where the canonical symplectic matrix is\[ \dot{x} = J \nabla H(x), \] where \[
J = \begin{pmatrix} 0 & I_n \\ - I_n & 0 \end{pmatrix} \] is the canonical
symplectic matrix, and \( H(x) \) is a scalar Hamiltonian function.
Necessary condition: zero divergence
Hamiltonian flows preserve phase--space volume (Liouville's theorem): \[ \nabla
\cdot f(x) = 0. \]
- If \( \nabla \cdot f(x) \neq 0 \), the system is not Hamiltonian.
- If \( \nabla \cdot f(x) = 0 \), Hamiltonian structure is possible.
Example: damped pendulum
\[
\dot q = \frac{p}{m\ell^2}, \qquad
\dot p = -m g \ell \sin q - c p
\]
The divergence is
\[
\nabla \cdot f
=
\frac{\partial \dot q}{\partial q}
+
\frac{\partial \dot p}{\partial p}
=
0 - c
=
- c \neq 0.
\]
Therefore, the system cannot be Hamiltonian.
Canonical Hamiltonian form
For a two--dimensional system
\[
\dot q = f(q,p), \qquad
\dot p = g(q,p),
\]
a Hamiltonian \( H(q,p) \) exists if
\[
\dot q = \frac{\partial H}{\partial p}, \qquad
\dot p = -\frac{\partial H}{\partial q}.
\]
Integrability condition
Taking mixed derivatives yields the consistency condition
\[
\frac{\partial f}{\partial q}
=
-\frac{\partial g}{\partial p}.
\]
- If this condition fails, no Hamiltonian exists.
- If it holds, a Hamiltonian can be constructed.
Hamiltonian construction
If the integrability condition holds, define
\[
H(q,p) = \int f(q,p)\, dp + C(q),
\]
and enforce
\[
\frac{\partial H}{\partial q} = -g(q,p)
\]
to determine \( C(q) \).
The Hamiltonian is unique up to an additive constant.
Example: undamped pendulum
\[
\dot q = \frac{p}{m\ell^2}, \qquad
\dot p = -m g \ell \sin q
\]
Check:
\[
\frac{\partial \dot q}{\partial q} = 0, \qquad
-\frac{\partial \dot p}{\partial p} = 0.
\]
Hamiltonian:
\[
H(q,p)
=
\frac{p^2}{2 m \ell^2}
+
m g \ell (1 - \cos q).
\]
Non-Hamiltonian example: damped pendulum
\[
\dot p = -m g \ell \sin q - c p
\]
\[
-\frac{\partial \dot p}{\partial p} = c \neq 0.
\]
Hence, no scalar Hamiltonian \( H(q,p) \) exists.
Jacobian matrix test
Let \( Df(x) \) be the Jacobian of \( f(x) \).
Hamiltonian systems satisfy
\[
Df(x)\,J + J\,Df(x)^{\mathsf T} = 0.
\]
Violation of this condition implies the system is not Hamiltonian.
Energy conservation
For Hamiltonian systems,
\[
\frac{dH}{dt}
=
\nabla H^{\mathsf T} J \nabla H
=
0.
\]
Energy conservation is necessary but not sufficient for Hamiltonian structure.
Comments
Post a Comment