Skip to main content

How to set up working X11 forwarding on WSL2

 This tutorial is about properly setting up WSL2 X11 forwarding on Windows and Linux distro


  1. Add the following to your ~/.bashrc
    export DISPLAY=$(awk '/nameserver / {print $2; exit}' /etc/resolv.conf 2>/dev/null):0 export LIBGL_ALWAYS_INDIRECT=1
  2. Enable Public Access on your X11 server for Windows.*
  3. Add a separate inbound rule for TCP port 6000 to the windows firewall in order to allow WSL access to the X server, as described by the wsl-windows-toolbar-launcher people.
On the Ubuntu Wiki page about WSL you can already find a configuration adapted for WSL2 under Running Graphical Applications. A similar configuration is also suggested by the above mentioned Reddit User, who also contributes another part of the solution: Enable Public Access on the X11 server under Windows.

Comments

Popular posts from this blog

What is the ESP32 VSPI / HSPI

 The ESP32 integrates four SPI peripherals. SPI0 and SPI1 are used to access the ESP32’s attached flash memory and thus are currently not open to users to be used . They share one signal bus via an arbiter. SPI2 and SPI3 are general purpose SPI controllers, sometimes referred to as HSPI and VSPI, respectively. They are open for use. SPI2 and SPI3 have independent signal buses with the same respective names. Each bus has three CS lines to drive up to three SPI slaves.  

Most common baud rates table

  The following table shows the most used baud rates. The left side part of the table shows speed and bit duration. The right part shows real transmission speed assuming there is no parity, 8 data bits and one stop bit.   Bauds Bits/s Bit duration Speed Actual speed Actual byte duration 50 bauds 50 bits/s 20.000 ms 6.25 bytes/s 5 bytes/s 200.000 ms 75 bauds 75 bits/s 13.333 ms 9.375 bytes/s 7.5 bytes/s 133.333 ms 110 bauds 110 bits/s 9.091 ms 13.75 bytes/s 11 bytes/s 90.909 ms 134 bauds 134 bits/s 7.463 ms 16.75 bytes/s 13.4 bytes/s 74.627 ms 150 bauds 150 bits/s 6.667 ms 18.75 bytes/s 15 bytes/s 66.667 ms 200 bauds 200 bits/s 5.000 ms 25 bytes/s 20 bytes/s 50.000 ms 300 bauds 300 bits/s 3.333 ms 37.5 bytes/s 30 bytes/s 33.333 ms 600 bauds 600 bits/s 1.667 ms 75 bytes/s 60 bytes/s 16.667 ms 1200 bauds 1200 bits/s 833.333 µs 150 bytes/s 120 bytes/s 8.333 ms 1800 bauds 1800 bits/s 555.556 µs 225 bytes/s

How to program 8051 based MCU using Ptroteous Schematic capture and Source code editor to use timers using AT892051 + project files

 This tutorial is dedicated to use a 8051 based Microcontroller core and program it using keil's C51 tools on the Proteus Source code editor.  1- Brief History of 8051 one of the first microprocessors 4004 was invented by Intel Corporation as well as  8085 and 8086 microprocessors back in 1981,shortly after Intel introduced an 8-bit microcontroller called the 8051 . It was referred to as system on a chip because it had 128 bytes of RAM, 4K byte of on-chip ROM, two timers, one serial port, and 4 ports (8-bit wide), all on a single chip. When it became so widespread, Intel allowed other manufacturers to make and market different flavors of 8051 with its code compatible with 8051. It means that if you write your program for one flavor of 8051, it will run on other flavors too, regardless of the manufacturer. This has led to several versions with different speeds and amounts of on-chip RAM. 2- Features of AT892051 Microcontroller Compatible with MCS®-51Products 2K Bytes of R